A better understanding of how support evolves online for undesirable behaviors such as extremism and hate, could help mitigate future harms. Here we show how the highly irregular growth curves of groups supporting two high-profile extremism movements, can be accurately described if we generalize existing gelation models to account for the facts that the number of potential recruits is time-dependent and humans are heterogeneous. This leads to a novel generalized Burgers equation that describes these groups’ temporal evolution, and predicts a critical influx rate for potential recruits beyond which such groups will not form. Our findings offer a new approach to managing undesirable groups online — and more broadly, managing the sudden appearance and growth of large macroscopic aggregates in a complex system — by manipulating their onset and engineering their growth curves.
Pedro D. Manrique, Sara El Oud, Neil F. Johnson