New Math to Manage Online Misinformation

SIAM News Blogs

Social media continues to amplify the spread of misinformation and other malicious material. Even before the COVID-19 pandemic, a significant amount of misinformation circulated every day on topics like vaccines, the U.S. elections, and the U.K. Brexit vote. Researchers have linked the rise in online hate and extremist narratives to real-world attacks, youth suicides, and mass shootings such as the 2019 mosque attacks in Christchurch, New Zealand. The ongoing pandemic added to this tumultuous online battlefield with misinformation about COVID-19 remedies and vaccines. Misinformation about the origin of COVID-19 has also resulted in real-world attacks against members of the Asian community. In addition, news stories frequently describe how social media misinformation negatively impacts the lives of politicians, celebrities, athletes, and members of the public.

Neil F. Johnson

View article >>

A Public Health Research Agenda for Managing Infodemics: Methods and Results of the First WHO Infodemiology Conference

JMIR Infodemiology

An infodemic is an overflow of information of varying quality that surges across digital and physical environments during an acute public health event. It leads to confusion, risk-taking, and behaviors that can harm health and lead to erosion of trust in health authorities and public health responses. Owing to the global scale and high stakes of the health emergency, responding to the infodemic related to the pandemic is particularly urgent. Building on diverse research disciplines and expanding the discipline of infodemiology, more evidence-based interventions are needed to design infodemic management interventions and tools and implement them by health emergency responders.

Calleja et al.

View article >>

Online hate network spreads malicious COVID-19 content outside the control of individual social media platforms

Scientific Reports

We show that malicious COVID-19 content, including racism, disinformation, and misinformation, exploits the multiverse of online hate to spread quickly beyond the control of any individual social media platform. We provide a first mapping of the online hate network across six major social media platforms. We demonstrate how malicious content can travel across this network in ways that subvert platform moderation efforts. Machine learning topic analysis shows quantitatively how online hate communities are sharpening COVID-19 as a weapon, with topics evolving rapidly and content becoming increasingly coherent. Based on mathematical modeling, we provide predictions of how changes to content moderation policies can slow the spread of malicious content.

N. Velásquez, R. Leahy, N. Johnson Restrepo, Y. Lupu, R. Sear, N. Gabriel, O. K. Jha, B. Goldberg, N. F. Johnson

View article >>

Hidden order across online extremist movements can be disrupted by nudging collective chemistry

Scientific Reports

Disrupting the emergence and evolution of potentially violent online extremist movements is a crucial challenge. Extremism research has analyzed such movements in detail, focusing on individual- and movement-level characteristics. But are there system-level commonalities in the ways these movements emerge and grow? Here we compare the growth of the Boogaloos, a new and increasingly prominent U.S. extremist movement, to the growth of online support for ISIS, a militant, terrorist organization based in the Middle East that follows a radical version of Islam. We show that the early dynamics of these two online movements follow the same mathematical order despite their stark ideological, geographical, and cultural differences. The evolution of both movements, across scales, follows a single shockwave equation that accounts for heterogeneity in online interactions. These scientific properties suggest specific policies to address online extremism and radicalization. We show how actions by social media platforms could disrupt the onset and ‘flatten the curve’ of such online extremism by nudging its collective chemistry. Our results provide a system-level understanding of the emergence of extremist movements that yields fresh insight into their evolution and possible interventions to limit their growth.

N. Velásquez, P. Manrique, R. Sear, R. Leahy, N. Johnson Restrepo, L. Illari, Y. Lupu, N. F. Johnson

View article >>

A computational science approach to understanding human conflict

Journal of Computational Science

We discuss how computational data science and agent-based modeling, are shedding new light on the age-old issue of human conflict. While social science approaches focus on individual cases, the recent proliferation of empirical data and complex systems thinking has opened up a computational approach based on identifying common statistical patterns and building generative but minimal agent-based models. We discuss a reconciliation for various disparate claims and results in the literature that stand in the way of a unified description and understanding of human wars and conflicts. We also discuss the unified interpretation of the origin of these power-law deviations in terms of dynamical processes. These findings show that a unified computational science framework can be used to understand and quantitatively describe collective human conflict.

D. Dylan Johnson Restrepo, Michael Spagat, Stijnvan Weezel, Minzhang Zheng, Neil F. Johnson

View article >>

Facebook Pages, the “Disneyland” Measles Outbreak, and Promotion of Vaccine Refusal as a Civil Right, 2009–2019

AJPH

We categorized 204 Facebook pages expressing vaccine opposition, extracting public posts through November 20, 2019. We analyzed posts from October 2009 through October 2019 to examine if pages’ content was coalescing.

David A. Broniatowski, Amelia M. Jamison, Neil F. Johnson, Nicolás Velasquez, Rhys Leahy, Nicholas Johnson Restrepo, Mark Dredze, Sandra C. Quinn

View article >>

Unifying casualty distributions within and across conflicts

Heliyon

The distribution of whole war sizes and the distribution of event sizes within individual wars, can both be well approximated by power laws where size is measured by the number of fatalities. However the power-law exponent value for whole wars has a substantially smaller magnitude – and hence a flatter distribution – than for individual wars. We provide detailed numerical evidence that confirms that these numerically different power-law exponent values are interrelated in a simple way by the effect of aggregating fatalities from individual events within wars to whole wars. We offer intuition for this finding and hence strengthen the case for a unified description and understanding of human conflict across scales.

Michael Spagat, Stijnvan Weezel, D. Dylan Johnson Restrepo, Minzhang Zheng, Neil F. Johnson

View article >>

The online competition between pro- and anti-vaccination views

Nature

Distrust in scientific expertise is dangerous. Opposition to vaccination with a future vaccine against SARS-CoV-2, the causal agent of COVID-19, for example, could amplify outbreaks, as happened for measles in 2019. Homemade remedies and falsehoods are being shared widely on the Internet, as well as dismissals of expert advice. There is a lack of understanding about how this distrust evolves at the system level. Here we provide a map of the contention surrounding vaccines that has emerged from the global pool of around three billion Facebook users. Its core reveals a multi-sided landscape of unprecedented intricacy that involves nearly 100 million individuals partitioned into highly dynamic, interconnected clusters across cities, countries, continents and languages. Although smaller in overall size, anti-vaccination clusters manage to become highly entangled with undecided clusters in the main online network, whereas pro-vaccination clusters are more peripheral. Our theoretical framework reproduces the recent explosive growth in anti-vaccination views, and predicts that these views will dominate in a decade. Insights provided by this framework can inform new policies and approaches to interrupt this shift to negative views. Our results challenge the conventional thinking about undecided individuals in issues of contention surrounding health, shed light on other issues of contention such as climate change, and highlight the key role of network cluster dynamics in multi-species ecologies.

Neil F. Johnson, Nicolas Velásquez, Nicholas Johnson Restrepo, Rhys Leahy, Nicholas Gabriel, Sara El Oud, Minzhang Zheng, Pedro Manrique, Stefan Wuchty, Yonatan Lupu

View article >>

Quantifying COVID-19 Content in the Online Health Opinion War Using Machine Learning

IEEE

A huge amount of potentially dangerous COVID-19 misinformation is appearing online. Here we use machine learning to quantify COVID-19 content among online opponents of establishment health guidance, in particular vaccinations (“anti-vax”). We find that the anti-vax community is developing a less focused debate around COVID-19 than its counterpart, the pro-vaccination (“pro-vax”) community. However, the anti-vax community exhibits a broader range of “flavors” of COVID-19 topics, and hence can appeal to a broader cross-section of individuals seeking COVID-19 guidance online, e.g. individuals wary of a mandatory fast-tracked COVID-19 vaccine or those seeking alternative remedies. Hence the anti-vax community looks better positioned to attract fresh support going forward than the pro-vax community. This is concerning since a widespread lack of adoption of a COVID-19 vaccine will mean the world falls short of providing herd immunity, leaving countries open to future COVID-19 resurgences. We provide a mechanistic model that interprets these results and could help in assessing the likely efficacy of intervention strategies. Our approach is scalable and hence tackles the urgent problem facing social media platforms of having to analyze huge volumes of online health misinformation and disinformation.

Richard F. Sear, Nicolás Velásquez, Rhys Leahy, Nicholas Johnson Restrepo, Sara El Oud, Nicholas Gabriel, Yonatan Lupu, Neil Johnson

View article >>

Hidden resilience and adaptive dynamics of the global online hate ecology

Nature

Online hate and extremist narratives have been linked to abhorrent real-world events, including a current surge in hate crimes and an alarming increase in youth suicides that result from social media vitriol; inciting mass shootings such as the 2019 attack in Christchurch, stabbings and bombings; recruitment of extremists, including entrapment and sex-trafficking of girls as fighter brides; threats against public figures, including the 2019 verbal attack against an anti-Brexit politician, and hybrid (racist–anti-women–anti-immigrant) hate threats against a US member of the British royal family; and renewed anti-western hate in the 2019 post-ISIS landscape associated with support for Osama Bin Laden’s son and Al Qaeda. Social media platforms seem to be losing the battle against online hate and urgently need new insights. Here we show that the key to understanding the resilience of online hate lies in its global network-of-network dynamics. Interconnected hate clusters form global ‘hate highways’ that—assisted by collective online adaptations—cross social media platforms, sometimes using ‘back doors’ even after being banned, as well as jumping between countries, continents and languages. Our mathematical model predicts that policing within a single platform (such as Facebook) can make matters worse, and will eventually generate global ‘dark pools’ in which online hate will flourish. We observe the current hate network rapidly rewiring and self-repairing at the micro level when attacked, in a way that mimics the formation of covalent bonds in chemistry. This understanding enables us to propose a policy matrix that can help to defeat online hate, classified by the preferred (or legally allowed) granularity of the intervention and top-down versus bottom-up nature. We provide quantitative assessments for the effects of each intervention. This policy matrix also offers a tool for tackling a broader class of illicit online behaviours such as financial fraud.

N. F. Johnson, R. Leahy, N. Johnson Restrepo, N. Velasquez, M. Zheng, P. Manrique, P. Devkota, S. Wuchty

View article >>